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The use of the Monte Carlo method for solving inverse problems, such as those commonly 
encountered in radiation physics, is investigated. It is shown that a non-iterative simulation 
procedure employing the importance sampling concept in which samples are taken from an 
arbitrary probability density function (pdf) can lead to a system of equations which can be 
solved for a set of parameters of the true pdf. Also, under certain conditions, the uncertainty 
in the retrieved parameters can be estimated. Specific examples demonstrating one- and four- 
dimensional inversions are considered. 

Monte Carlo is a technique used widely in fields ranging from radiation transport 
[l-3] to business decision making [4]. In essence, it is a means of estimating 
expected values, and hence is a form of numerical quadrature. Although Monte Carlo 
can be applied to simple processes, and one-dimensional integrals, its main utility is 
found in simulating complex processes, and estimating multidimensional integrals. 
The power of the Monte Carlo technique rests in the facts that: (a) it is often more 
efficient than other quadrature formulas for estimating multidimensional integrals, (b) 
it is adaptable, in the sense that variance reduction techniques can be tailored to the 
specific problem, and (c) it can be applied to highly complex problems for which the 
definite integral formulation is not obvious and standard analytic techniques are inef- 
fective. 

Despite the wide applicability and general success of Monte Carlo in direct 
simulation, it has not been viewed traditionally as a good inverse technique, since an 
iterative simulation procedure is generally out of the question. Consider the for- 
mulation 

4x, Y> f(x) dx, 

in which z is a kernel, f a probability density function (pdf), and r an expectation. 
Monte Carlo is often used to solve the direct problem, i.e., to estimate r at discrete 
values of y, given z and f. However, it is not considered generally well suited to 
iteratively solving the inverse problem, i.e., to find f, given z and r. 
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The traditional inverse approach using simulation is to search on a set of 
parameters, a, of the desired function, f, until some objective function, Q(a), is 
minimized. This requires that direct simulations for r be repeated as different values 
of a are searched iteratively, a procedure which can quickly become prohibitive in 
terms of computation effort. Here, we consider an alternative inverse Monte Carlo 
formulation, which requires only one direct simulation, and we demonstrate its 
usefulness through some simple examples. It is noted that inverse analysis is basic to 
many fields. Specific radiation physics applications include: remote sensing, in which 
unknown atmospheric or terrestrial properties (such as temperature profiles or 
particle size distributions) are sought; radioisotope gauging, in which material 
properties (such as density, thickness, or composition) may be unknown parameters; 
and medical radiation diagnostic testing, in which the organ burden of specific 
elements (such as cadmium in the kidney) is desired. 

In the following section, pertinent Monte Carlo principles are reviewed and the 
theory of inverse Monte Carlo is presented, including a treatment of sensitivity and 
precision. Then, two specific simple examples are considered in order to demonstrate 
how particular inversions might be carried out using this procedure. Conclusions are 
drawn in the final section. 

THEORY 

Monte Carlo is a well-known technique for estimating expected values. Since an 
expectation can be written as a definite integral, Monte Carlo is in fact a form of 
numerical quadrature. It is also applied in applications where the integral formulation 
as an expectation is not obvious. In these cases, the Monte Carlo method can be 
thought of as the process of conducting a contrived mathematical experiment to 
estimate the expected outcome of a stochastic process by sampling from the 
governing probability densities, and thus as a numerical analogue to a physical 
experiment. As such, it is subject to the uncertainty inherent in any finite observation 
of a stochastic process. In principle at least, this uncertainty can be reduced to any 
desired degree by increasing the sample size and/or by suitably modifying the 
sampling process. 

Preliminaries 

We review a few basic concepts of Monte Carlo in order to establish the 
framework for what follows. Since multidimensional sampling involves successive 
samplings on individual variables, we limit our consideration to the case of a single 
random variable, x, which is governed by the pdf,f(x). We also suppose z represents 
the outcome of a stochastic process which is a function of the random variable, X, 
and perhaps another independent variable, y. Then z(x, y) is also a random variable, 
with expected value 
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and variance 

a’(z) = I m k(xv v> - W))l*.D) dx = (Z”(Y)) - WD’. (3) --m 

The basis for direct Monte Carlo follows from the Strong Law of Large Numbers 
] 1, 5,6], which states that the quantity 

2(y) =; .t z,(y), 
?I 

(4) 

where zi(y) = Z(C, y) and & is a random sample fromf(x), is an unbiased estimator 
for (z(y)). The quantity 2 is a Monte Carlo estimate of (z), and has the form of a 
numerical quadrature in which the < are nodes and the weights are of equal value, 
l/N. 

Because most simulation processes are inefficient, techniques have been devised 
[7,8] for reducing the number of trials required to obtain a result with a given 
variance. For our purposes, it is sufficient to consider only one such technique, 
importance sampling, which provides a means for altering the sampling process by 
allowing the nodes to be chosen from an arbitrary pdf. In direct Monte Carlo, impor- 
tance sampling is a technique to reduce the variance by using a knowledge of the 
physical processes involved or some other a priori information to choose the ci from 
a pdf which will favor histories that lead to successes. Consider the pdf,f*(x), and 
the function 

z*(x, Y) = z(x, v> W(x), (5) 
where 

W(x) = f(x>/f*(x>* (6) 

It is easily shown that the expected value of z* with respect to f * is the same as the 
expected value of z with respect tof, although the variances may be different. Thus, 
we can estimate (z(y)) by using Monte Carlo to estimate (z*(y)). This leads to a 
quadrature having the more standard form 

(Z(Y)) = j_“, Z(Xy Y)f(X)dr~Z’(y)=$ $ z(ti9 Y> wi> 
l-1 

(7) 

in which the nodes are obtained by sampling from f * and the weights are given by 

wi = f(ti)/f* (tile 

This is the standard importance sampling process. Sampling from f* introduces a 
bias which is accounted for by the weight factor, W = f/f *, so that the estimate I* is 
also an unbiased estimator for (z). 
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Inverse Monte Carlo 

Now, we consider the use of importance sampling in inverse analysis. A general 
inverse problem can be expressed in the form of a Fredholm Equation of the First 
Kind, i.e., 

r(y) = ! dm 4x> ~)f(x) dx, (8) 
-a: 

in which the function f is unknown and r can be measured at n discrete values of y, 
yielding the vector r. The objective is to find m < n parameters off by inversion. 
These parameters, a, may be disjoint in x such that 

f(X)=ai,xE (XirXj+*)3 i = 1, 2,. .., m, 

= 0, otherwise, 
(9) 

where 

or overlapping in x such that 

f(x) = fh x>, (11) 
where a is a column vector of m global parameters in some assumed functional form 
forf: If a suitable quadrature can be applied, the problem is effectively transformed to 
a system of n equations in m unknowns, the specific form of which will depend on the 
kernel, z, and on the quadrature scheme. The traditional simulation approach is to 
choose an intial estimate for a, use a simulation model to construct estimates, i, of r 
by sampling from the assumedf, and iterate in order to find the a which best matches 
i to T in some sense. This is obviously costly since multiple simulations are required. 

We now present an alternative approach which involves simulating the process 
only once using an assumed from, f*, forfin the importance sampling manner. This 
requires the weighting of each history by the ratio f/f*, which is a function of a, 
leading to a quadrature approximation of the form 

r ~ i = L + z(C) f (a3 6) 

N iZ1 f*(Ti) ’ 
(12) 

in which all quantities are known except the a. If f is linear in the a, this has the 
matrix form 

r=Aa, (13) 

and a straightforward matrix inversion is possible. If f is nonlinear in the a, a 
nonlinear inversion is necessary. Hence, the importance sampling concept of direct 
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Monte Carlo can be used to derive a system of equations in a single-step procedure 
which in principle can be solved, at least numerically, for the parameters, a, of the 
unknown functionf. Of course, the domain off * must include that of the actual pdf 
in the sense that f * is nonzero where zf is nonzero, so that all regions of x which 
contribute to the expectation are sampled. 

This is a single-step procedure in the sense that it is non-iterative. However, since 
there are n different elements of the vector r, it may be necessary to perform separate 
simulations to construct estimates of different members, depending on the specific 
experiment. If a given simulation history can lead to any one of the n outcomes, then 
all elements of r can be simulated in one ensemble of histories by proper scoring; 
however, if, for instance, different initial conditions are required for different elements 
of r, then separate simulations may be required. In either situation, the proposed 
inverse formulation is non-iterative. 

The advantages of this formulation are similar to those of direct Monte Carlo. 
They include: (a) the need to perform the direct simulation only once; (b) the ability 
to choose the importance function, f *, to suit the problem; (c) the fact that the 
simulation does not require the explicit Fredholm Equation formulation as long as the 
physics of the problem are known; and (d) the ability to handle complex kernels, 
which may pose significant difficulties for analytic approaches. 

Not only can we generate a system of equations for a, by Monte Carlo, but we can 
often estimate the uncertainty in their solution. Recall that in direct Monte Carlo the 
variance of the mean, commonly denoted 0*/N, can be estimated by the quantity 

s* 
y = N(N1e 1) i Q-i - i)* = gq (3 - i’) 9 I 1 (14) 

where r” is the Monte Carlo estimate of the mean and ri is the score of the ith history. 
Thus, we can construct a measure of the uncertainty in the estimate i, namely, 

2 l/2 

u(r;) = $ [ I zs*, i=l,2 ,..., n. (15) 

If the li are measurements, they will also be subject to uncertainty, which we denote 
by the standard deviations o(ri). Hence, the comparison of ri with ii, given in 
Eq. (12), will be subject to a combined standard deviation given by 

ui = [a2(ti) + a’(rJ]“‘. (16) 

Assuming the ri are independent, this uncertainty is propagated through Eq. (12) to 
give an uncertainty in the calculated aj which can be estimated by the standard 
formula, given by Jaffey [9], 

a(aj)= [ & (J!$‘Uf]l’*. j= 1, 2 ,..., m. (17) 
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We note that aaj/ayi is to be evaluated at yi, and is merely an estimate of the 
sensitivity of the solution for aj to variations in the response about the point ri. 
However, it may often be simpler to evaluate &@a, than aajpri, expecially if 
Eq. (12) is not linear in the a. In these cases, u(aj) can be estimated by replacing the 
aol,l&, in Eq. (17) with (ari/aaj)-‘, which can be obtained, at least numerically, from 
the system to be inverted, i.e., from Eq. (12). 

Unfortunately, the calculation of the a(?,) and &@a, requires that the value of a 
be known. This situation can be handled in any of several ways, e.g.: (a) complete a 
preliminary inverse Monte Carlo calculation for a, then use this value to estimate the 
a(?,) (if necessary, in a subsequent inverse Monte Carlo calculation); (b) assume a 
value for a, for the purpose of estimating a(?,), from the interval over which the 
solution is expected; or (c) assume a(!,) s a(r,), so that ut = 2u2(ri). Option (a) can 
be employed in the following manner. Identify the desired sample size, N. Run a 
simulation using N/2 histories and calculate a,. Run a second simulation of N/2 
histories to compute a, and, using a,, the u(aj). Finally, average the results of the 
two simulations to obtain an a based on the desired sample of N histories. 

If desired, a composite standard deviation can be formed from 

[ 

l/2 
u(a) = ? wju2(aj) , 

,z, 1 (18) 

where wj is a weight factor associated with the solution for aj and provides a measure 
of the relative importance of the solution for the jth parameter. Then clearly the 
quantity u(a) provides a measure of the quality of a particular inverse formulation. 
The specific choice of the importance function, f *, affects both the sensitivities and 
the standard deviations in the estimates, u(?J, and hence provides a means for 
constructing an optimal system of equations for inversion. 

APPLICATION 

In order to demonstrate the application of inverse Monte Carlo analysis, we first 
consider a simple example in radiative transfer. Let a semi-infinite, homogeneous, 
isotropic, plane-parallel gray atmosphere of unit optical thickness be subject to a 
steady, uniform, isotropic incident radiation field on the left face. Let A and B be the 
albedo and transmission, respectively, and 2 and B be measurements of these quan- 
tities, i.e., 

(19) 

and 

Br B = 2 -’ 
j 

!P(l,p; w)p dp, 
0 

(20) 
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where Y is radiation intensity, x is the optical variable, ~1 is the direction cosine of the 
propogating radiation with respect to the positive x-direction, o is the single scatter 
albedo, and 

~(O,p) = 1, P > 0, (21) 

q1,pu)=o, p < 0. (22) 

We wish to find the scattering probability, w, from either of the measurements d or 
B. We note that Eqs. (19) and (20) are not directly in the form of Eq. (8), although 
the problem could be so posed; here we simulate the physics of the problem. 

We construct a simple algorithm to estimate A and B by direct Monte Carlo. The 
incident distribution is equivalent to a surface source of strength 

Q, = WA P) = ~1, /I > 0. (23) 

Thus, the incident direction cosine, pot of a source particle is sampled from the pdf 

f010) = %I 2 PO E [a 1). (24) 

The distance to the first interaction point is determined in the usual manner, and the 
particle is forced to scatter at the interaction point. This is the importance sampling 
step which allows the inverse calculation for o, and corresponds to sampling from 
the assumed pdf, 

f’= 1, scatter, 

= 0, absorption, 
(25) 

instead of the true pdf, 

f=w scatter, 

=1-m, absorption. 
(26) 

This requires weighting at each interaction point by the factor W = co. A new 
direction, assuming isotropic scattering, is then chosen and the particle followed to its 
next interaction point or to escape. In order to improve the efficiency of the 
calculation, last-flight estimation [3] is applied. This consists in extending each flight 
path to force escape, and adjusting by the weight factor 

W = e*‘, iu < 0, 

=e -(I-X)//c 3 p <o. 
(27) 

At each interaction point, a scatter is forced, a new direction is chosen and last-flight 
estimation is employed. Thus, we obtain estimates for A of the form 

(28) 
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where the history weight is the product of weights at each interaction point, i.e., 

Wi = fi W eXP(Xj//j)i9 
i=l 

(29) 

xj is the optical depth at which the jth scatter occurs, ,uj is the direction cosine after 
the jth scatter and Ji is the number of interactions during history i before escape from 
the slab. After N histories have been simulated, this leads to a polynomial equation of 
the form 

A=a,w+a,w’+ . . . +a,w”, (30) 

where 

v = max(J,), i = 1, 2,. .., N. (31) 

The quantity ajd represents the contribution to the total albedo from particles 
which undergo j scatters before escape through the left face. Similarly, for the 
transmission, we obtain an equation of the form 

B=b,+b,w+b,02+.** +b,o”. (32) 

It is then necessary only to find the zeros of a polynomial of degree v in order solve 
the inverse problem. 

The results of a series of inverse Monte Carlo runs for the case w  = 0.8 are given 
in Table I. For these runs, the values d = 0.2802 and B = 0.4 162, obtained by the FN 
method [lo], were input and the simulations were terminated after a specified number 
of scatters, V. The uncertainties in the x and B were assumed negligible and the true 
value, o = 0.8, was used in the calculation of a(o). The results demonstrate that the 
single scatter albedo can be estimated fairly accurately in a reasonable number of 
histories. Also, the results do not appear to be very sensitive to the value of v used, 
above about v = 8, indicating that the contributions to the albedo and transmission 
quickly decrease with increasing number of scatters. 

TABLE I 

The Inverse Solution for the Single Scatter Albedo, w = 0.8 

Number of Number of scatters 
histories, N allowed, v ‘3. w 4w) 

10,000 6 (30) 0.8004 0.005 1 
20,000 8 (30) 0.8022 0.0035 
40,000 IO (30) 0.8012 0.0025 

10,000 6 (32) 0.8090 0.0060 
20,000 8 (32) 0.8004 0.0040 
40,000 10 (32) 0.8003 0.0029 
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We note that all but one of the calculated values of w  are within the indicated 
standard deviations of the true value, o = 0.8. Further, it is apparent that the 
calculated standard deviations, a(w), vary approximately as l/p, as expected. 
Interestingly, although the direct simulations for the transmission are more precise 
than those for the albedo, the inverse calculations for o using the albedo are more 
precise than those using the transmission. This occurs because the sensitivity of 
Eq. (30), dA/dw, is sufficiently greater than that of Eq. (32), dB/dw, for the case 
considered. It is also noted that although this was a rather simple example, extensions 
to more complicated geometries or to nonuniform boundary conditions, which may 
pose significant problems for traditional inverse approaches, present only technical 
difficulties for the Monte Carlo method. 

A second example, similar to one posed by Chahine [ 111, is considered in order to 
demonstrate a multivariable inversion. Here, the problem is posed and solved in a 
strictly mathematical sense, without considering a specific physical process. We 
assume f satisfies 

Z(v) = 
i 

’ H(x - v) f(x) dx, lJE 10, I>, (33) 
0 

where H(x - V) is the unit step function, 

H(x - u) = 0, x < v, 
(34) 

= 1, x > v. 

We further assume f has the step-wise form 

f(x) = al, 

a2, 

a3, 

a4, 

0, 

Then, given “measurements” 

xEA,= [0,0.2), 

x E A, = [0.2,0.4), 

x E A, = [0.4,0.8), 

x E A, = [0.8, 1), 

otherwise. 

F(O) = 1, 

f(O.2) = 0.92, 

f(O.4) = 0.76, 

(35) 

and 

T(O.8) = 0.08, (36) 
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we seek to obtain the czi. The solution is easily obtained by standard techniques and 
is seen to be 

a, = 0.4, 

a, = 0.8, 

a3 = 1.7, 

a, = 0.4. 

(37) 

We wish to demonstrate the inverse Monte Carlo principle for a four-dimensional 
inversion by attempting to retrieve these parameters. We begin by sampling from the 
unit rectangular pdf 

s “(xl = 1, XE [O, I>, 
= 0, otherwise, 

(38) 

which is defined over the appropriate interval, (0, 1). Then, we construct Monte Carlo 
estimates, f, of Teach of the form 

4 = $ t H(ti - vj) f(C), j = 1, 2, 3,4, 
r-1 

where the ri are sampled from f * and the vj assume the values 

Substituting 1 for 1, we obtain 

where 

Vl =o, 

VI = 0.2, 

vj = 0.4, 

v, = 0.8. 

(39) 

(40) 

I= Aa, (41) 

A = C”ji)4x43 (42) 

(43) 

and Ni is the number of sampled values, &, within Ai, where the Ai are defined in 
Eq. (35). 

The solution of Eq. (41) is easily obtained by matrix inversion. The results of a 
sequence of simulations employing increasing sample populations, N, are given in 
Table II and show clearly the convergence toward the true pdf. For the calculation of 
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TABLE II 

Retrieval of Step-wise PDF Parameters 

Number of histories, N 

Parameter 2500 10,000 40,000 Actual values 

0.408 0.392 0.418 0.4 
0.088 0.046 0.023 - 
0.666 0.803 0.765 0.8 
0.101 0.054 0.026 
1.74 1.70 1.70 1.7 
0.04 1 0.020 0.010 - 
0.414 0.389 0.405 0.4 
0.016 0.008 0.004 
0.141 0.074 0.036 - 

the @(xi), the true values of ai were used, since they were known, and the a[F(ri)] 
were taken to be zero. We note that 8 of the 12 retrieved values (or 67%) were within 
the indicated standard deviations of the true values, and that the standard deviations 
vary approximately as l/@, as expected. The u(a) were calculated from Eq. (18) 
with the wj = 1. We also note that since H(x), H(x - 0.2), H(x - 0.4), and 
H(x - 0.8) form a basis for f, we are able in principle to retrieve fcompletely, in the 
limit as N-P co. 

Because the czi in Table II are only estimates, their substitution into Eq. (35) will 
not give a properly normalized pdf. The results of applying two normalization 
schemes to the values obtained in the 40,000-history simulation of Table II are shown 
in Table III. In the first scheme (Sl), the values were simply scaled by the 
normalization factor 1.0024. In the second scheme (S2), the parameter with the 
largest standard deviation, a*, was recalculated by subsituting the retrieved values for 
the other three parameters into the normalization condition. Regardless of which 
procedure is preferred, it is clear that the inverse Monte Carlo technique can be 
applied to the multidimensional retrieval of a pdf. 

TABLE III 

Normalization of Retrieved Parameters 

Parameter 

Retrieved 
values 

(N = 40,000) 
Sl 

values 
s2 

values True values 

al 0.418 0.419 0.418 0.400 
a2 0.765 0.767 0.777 0.800 
a3 1.70 1.70 1.70 1.70 
a4 0.405 0.406 0.405 0.400 
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CONCLUSIONS 

Inversion by Monte Carlo need not involve iterative forward solutions of the direct 
problem as parameters are varied through some search procedure. Instead, a system 
of equations can be developed in terms of the desired parameters using only one 
direct simulation in which an arbitrary pdf is sampled in place of the unknown one. 
Thus, there are an infinite number of inverse formulations possible, as determined by 
the specific pdf employed in the importance sampling scheme. Undoubtedly, certain 
choices will lead to more well-behaved systems than others, for a given number of 
histories in the forward simulation. 

In radiation applications, for example, it is usually possible to write the 
appropriate radiative transfer or radiation transport equations and boundary or initial 
conditions, although it is often difficult to solve them analytically. Monte Carlo 
simulation provides a way to construct “solutions” to either the direct or inverse 
problem. Given the phase function (the pdf describing the radiation scattering) one 
can simulate to obtain estimates of the radiation flux or intensity; alternatively, given 
measurements of the intensity or related quantities one can sample from an arbitrary 
phase function to construct a system of equations which can be solved to obtain 
estimates of parameters of the true phase function. 

This inverse Monte Carlo technique is general, in that it can be applied to any 
problem which can be adequately posed and for which the physical data are 
available. In this sense, it allows the simulation of experiments which might be 
expensive, time-consuming, or too idealized to run in the laboratory or in the field. 
Hence, the inverse Monte Carlo approach can be used to lead the experimenter 
toward optimal experiment design. Another aspect of its generality is the fact that, in 
principle at least, it can be applied where the physical experiment is constrained to 
conditions for which an analytic inverse model is difficult to develop. Thus, it can be 
matched to the physical situation. The inverse Monte Carlo method is also selective, 
since it can be used to study particular aspects of a problem, the effects of which 
might not be easily isolated experimentally. Thus, for instance, the portion of a 
response coming from a particular region of parameter space can be identified by 
suitable scoring of a simulation, even if separation of the response into components 
might be difficult experimentally. 

The simple examples considered demonstrate the principle for single-dimensional 
and multidimensional retrievals. Clearly, extension to higher dimensionality is 
straightforward, though perhaps cumbersome in some cases. It is realized that inverse 
Monte Carlo will not be the universally preferred technique and that other inverse 
formulations will prove preferable in certain circumstances. However, this technique 
does provide a means of generating an invertible system of equations in a single-step 
direct simulation, and does provide an approach which may prove useful when other 
formulations fail, are suspect, or are difficult to apply. 
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